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We consider the problem of  the development  of  boundary-layer f low on a suddenly acceh, rated disk in a 

two-layer f lu id  when at the initial instant  o f  t ime the interface between the f luids  is perpendicular to the plane 

o f  the disk. 

The efficiency of certain processes of chemical technology, such as centrifugal extraction, depends on the 

boundary- layer  flow of fluids over a disk rotating about its axis during a change in its angular velocity [1 ]. It is 

assumed thal the two phases of an incompressible fluid are not mixed and differ in density (Pl, P2) and kinematic 

viscosity (v 1, v2). In the case of prolonged rotation of a container with a constant angular velocity Qo, the phase 

interface is vertical, f ( z )  = r* - const, and all of the velocity vector components in the coordinate system r, z, 0 

fixed on the disk are equal to zero: Vr = Vz = VO = 0. When at the time moment r = 0 the speed of rotation increases, 

V2 = qa 0 + co, near the surface z = 0, a radial flow (the Ekman layer) develops, which deforms the phase interface: 

r = f ( z ,  r). The latter leads to the appearance of buoyancy forces, which stabilize the position of the interface. For 

a homogeneous fluid (Pl =P2,  vl = v2) this class of flows has been investigated rather extensively [2-4 1. However, 

until recently not enough attention has been devoted to theoretical investigations of the dynamics of a two-layer 

fluid. In this article we present the results of a mathematical and an empirical modeling of the acceleration process. 

A preliminary analysis of the initial Navie r -S tokes  equations from the standpoint of similarity theory [5 1 

showed that at small values of the Rossby,  e = r and Ekman, 6 = vgT1Qo/(eor*), numbers the flow in the 

Ekman layer can be described within the scope of a simplified mathematical model: 
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Fig. 1. Streamlines and phase interface at A = 1 and t = 2. 

where 

I1," F < x < 0 ,  
H =  - 0 < x < F ,  K v =  

0 otherwise 

1 ,  x < F ,  

v 2 
7(I' x >  F ,  

Problem (1)-(8) is written in dimensionless variables 
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with terms of the order of 0@ + ~3 2) being discarded. In deriving equations (1)-(2) it was assumed that viscosities 

vl and v2 were of the same order of magnitude. The mathematical model obtained differs from the well-known ones 

[2, 3] by the term B K p H  in Eq. (1) and is reduced to them at B = O .  

For a numerical realization of model (1)-(9) a finite-difference method is suggested, which is described in 

detail in [5]. When passing to a new time layer, the functions U, V, W, and F a r e  found with the aid of an iterative 

process; the criterion cessation of iterations is stabilization of the position of the boundary  F. In each iteration the 

difference analogs of Eqs. (1)-(3) are solved in succession to determine velocities V, U, and W, as is kinematic Eq. 

(4), which makes it possible to determine the position of the boundary  F and to determine more precisely the 

coefficients H, Kp,  and Kv by formulas (8). To ensure stability of the calculation algorithm, the convective terms 

in Eqs. (1) and (2) were approximated with the aid of "counterflow differences," while an artificial viscosity in the 

x direction was introduced into Eqs. (1) and (3). The coefficients of pseudoviscosity were selected in accordance 

with the steps of a rectangular grid. This provided the first order of the difference scheme approximation [6 ]. Tile 

boundar ies  of the grid region that s imulate  inf ini ty  in bounda ry  condi t ions  (5) and  (6) were de te rmined  

experimentally from the requirement that their further removal from the coordinate origin does not influence lhe 

solution of the difference scheme. 

The calculation algorithm was tested by the method of enhanced grid resolution. We determined the 

part, reeler values thal provided acceptable calculation accuracy. The mean calculation time within the inl0n 'al  

0 < l < 3 with a time step of 5" 10 -3 on a grid containing 50 • 40 nodes along the x and 3' coordinates is 60 rain 

on an ES-1045 computer, including the calculation of streamlines and the derivalion of graphical information. 

Comparison of the calculated results for the dynamics of a homogcneous fluid (K/, = 1, K,, = 1, Lr = 0) wilh a 
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Fig. 2. Compar i son  of expe r imen ta l  and predic ted  results  on the mutual  

pene t ra t ion  of phases.  R, mm. 

well-known precise solut ion [3 ] showed that the maximum deviat ion did not exceed 5 % ,  with the numer ica l  solution 

reflecting all the quali tat ive aspects  of the analyt ica l  one, including the presence of weak reverse flows. 

As seen  f rom the s t a t e m e n t  of p rob lem ( 1 ) - ( 8 ) ,  the  process  of acce l e r a t i on  is d e t e r m i n e d  by two 

d imens ionless  groups:  A = B p 1 / P 2  and v 2 / v  I . Numerical  exper iments  showed that  a change in the rat io v 2 / v  1 within 

the range of 0 . 5 - 2  exer ts  an insignif icant  effect on the pat tern of fluid flow and the depth  of the mutual  pene t ra t ion  

of phases ,  whereas  the effect of the Archimedian  force A is predominant .  A typical  pat tern of s t reaml ines  in the 

x O y  plane and the charac ter i s t ic  shape  of the phase interface are  shown in Fig. I. An important  flow feature  when 

0 < /1 < 2 is the fact that  apprec iabe le  penetra t ion of the light phase into the heavy phase proceeds  up to the 

moment  t = 2 and then stops. In this case an ascending  flow along the line x = 0 is formed that does not en te r  the 

zone of phase  subs t i tu t ion .  It is found that  when A > 2 the pene t ra t ion  of one fluid into the o ther  becomes 

insignif icant  (less than 0 .03tr*) ,  which is impor tant  for problems of chemical  technology,  for example ,  mass  

transfer .  

Along with mathemat ica l  s imulat ion of the accelerat ion process,  we carr ied out exper imenta l  invest igat ions.  

Since it is v i r tual ly  imposs ib le  to measure  the local velocity fields in a bounda ry  layer ,  because  of its small  

d imens ions  (the Ekman layer  = 0.3 mm),  and  also in view of the fact that the magni tude  of the in te rphase  surface 

area  is of i ndependen t  in teres t  for chemical  technology, emphasis  was placed on de te rmina t ion  of the dynamics  of 

the bounda ry  F. Invest igat ions  were carr ied out in an exper imenta l  cyl indr ical  conta iner  with an annu l a r  channel  

with a cross-sect ion of 40 • 40 ram. The  channel  was filled with two fluids: a l ighter  electrically conduct ing  one 

(water + NaCI; pl  = I001 k g / m  3, v 1 = 0 .94 .10  -6  m2/sec)  and  a heavier  one (CCI 4 + kerosene;/92 = 1120 kg/m3;  

v 2 = 1.6- 10 -6  m2/sec) .  To measure  the depth of penetra t ion of the light phase in the radial  section of the channel  

we instal led seven e lec t rodes  at d is tances  95, 100, 101.9, 102.4, 103, 104.1, and  104.8 mm from the axis of rotat ion.  

The first of these (anode)  was immersed  in the electrically conduct ing fluid. The  second one (cathode) was used 

to control the posit ion of the phase interface in s teady  rotation. 

Dur ing  acce le ra t ion ,  the ca thodes  were a l t e r n a t e l y  c losed by a l aye r  of the pene t r a t i ng  e lec t r ica l ly  

conduct ing fluid, and  the cor responding  signals were recorded by an NO71.2 l ight-beam oscil lograph. The  con ta iner  

was rotated by two motors,  the switching of which made it possible to increase the rotation speed from s = 107 

sec -1 to 118, 125, and 137 sec - I  for a time interval not exceeding 0.25 sec. The  rotation frequency was control led  

by a TE-204 tachometer  whose readings  were recorded b v the same l igh t -beam oscil lograph. 

We carr ied  out three exper iments  that cor responded to different  values of the cri terion A. The  results  of 

measurements  of the maximum advance of the phase interface are  shown in Fig. 2. The  lines des igna te  the results  

of numerical  c:dculat ion (the solid line corresponds  to A = 1.04, the dashed  line to A = 0.64, and the d a s h e d - d o t t e d  

line to A = 0.35). The  points represent  exper imenta l  data.  The d iscrepancy of the results  does not exceed 15%. 

This is compat ib le  with the uncer ta in ty  of both the exper iment  itself and the mathemat ica l  model adopted .  
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In conclusion we note thal the model (1)-(8) does not take into account the effect of the forces of 

intermolecular tension. The satisfactory agreement between the results of simulation and experiment allows it 1o 

be assunmed thal the effect of the indicated forces is localized in the neighborhood of the end of the penetrated 

phase, where the curvature radius is fairly small. 

N O T A T I O N  

Pl, P2, densities of fluids (kg/m); vl, v2, kinematic viscosities of fluids (kg/m); QO, initial angular velocity 

(I/see); (r, z, 0), cylindrical coordinate system; Vr, Vz, VO, fluid velocity components relative the rotor (m/see); 

r, time (see); m, value of change in the angular velocity (l /see);  t, dimensionless time; U, V, W, dimensionless 

velocity components; e = cv/Q 0, Rossby number; 6 = v~]QO/(cor*), Ekman number; B = (,o 2 - p l ) / ( e p l ) ;  A = 

Bpl /P2. 
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